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ABSTRACT

ertussis, a highly contagious respiratory disease, poses
a significant health threat across all ages, with infants
younger than one year of age facing the highest risk of
hospitalization and death. In the Philippines, pertussis
caused 48 deaths among 705 reported cases in 2023.
While these numbers appear modest, they likely reflect
substantial underreporting given the presumed circulation of the
disease, raising concerns about the true extent of the pertussis
burden. Modeling efforts can improve our understanding of
pertussis transmission dynamics and help assess the impact of
vaccination; however, such a comprehensive mathematical
analysis has been lacking in the country. We developed a
Susceptible-Exposed-Infectious-Recovered-Susceptible
(SEIRS)-based model that incorporates varying exposure levels
to analyze pertussis transmission dynamics, calibrated using
national epidemiological data from 2017 to 2019. Our model
captured the observed pertussis epidemic trends and revealed
that actual pertussis cases may be 1040 times higher than
reported. The model also demonstrated that maintaining a high
level of protection is crucial for preventing case surges, as lower
protection levels increase susceptibility and outbreak potential.
The substantial underestimation of pertussis incidence and the
projected impact of vaccination together highlight the need for
enhanced surveillance systems and strengthened pertussis
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immunization programs. Our study provides important insights
into pertussis epidemiology in the Philippines and in the
Southeast Asian region, offering a foundation for evidence-
based public health policies aimed at achieving more effective
pertussis control.

INTRODUCTION

Pertussis or whooping cough, caused by Bordetella pertussis, is
a highly contagious respiratory disease that remains a significant
public health concern. In 2022, an estimated 62,000 cases were
reported globally, with more than half occurring in the Western
Pacific Region (World Health Organization, Regional Office for
the Western Pacific 2025). In the Philippines, 705 cases were
recorded in 2023, leading to 48 deaths (Department of Health
2024). Although these figures appear modest, they likely
underestimate the true incidence due to underreporting, given
the high transmissibility potential of pertussis (Cherry et al.
2013). Despite widespread vaccination efforts (World Health
Organization 2025), pertussis continues to circulate,
highlighting the need for a better understanding of its
transmission dynamics.

Vaccination continues to be the most effective strategy for
preventing pertussis (Schuchat 2011). Both natural infection and
vaccination provide temporary immunity, with infection-
induced protection lasting for 15 to 20 years and vaccination-
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induced immunity ranging from 5 to 30 years (Wirsing von
Konig et al. 2002; Wendelboe et al. 2005; Russell et al. 2021).
The DTaP (Diphtheria, Tetanus, and Pertussis) and Tdap
(Tetanus, Diphtheria, and acellular Pertussis) vaccines protect
against pertussis, with DTaP given in five doses to children up
to age 7 and Tdap given as a booster for adolescents (11-12
years) and adults every 10 years (Centers for Disease Control
and Prevention 2025). In the Philippines, the Department of
Health (DOH) offers free diphtheria-tetanus-pertussis
immunization beginning at six weeks of age (Department of
Health 2025; UNICEF Philippines 2025). In 2019, vaccination
coverage for children aged 12-23 months reached 71%, up from
69% in 2017 and 65% in 2018 (World Health Organization
2024).

Accurate disease incidence data are vital for public health
decision-making. However, pertussis is often underreported due
to factors such as misdiagnosis, inadequate surveillance, and
asymptomatic or mild cases going unnoticed (Meadows et al.
2022). In some countries, actual incidence rates may be
significantly higher than reported (Bagordo et al. 2023;
Guzman-Holst et al. 2023), making it challenging to assess the
true impact of the disease and potentially influencing how
interventions and resources are prioritized.

Dynamic modeling is a powerful tool for understanding disease
transmission and assessing the population-level impact of
vaccination programs (Hethcote 2000). These models account
for the dynamic nature of infection spread by assuming that the
rate at which susceptible individuals become infected depends
on the number of infectious individuals in the population (Jit and
Brisson 2011), providing a more realistic representation of
transmission. Additionally, dynamic models capture nonlinear
effects, such as herd immunity, which is crucial for accurately
evaluating the impact of vaccination strategies on disease burden
(Hethcote 2000).

Several studies have explored the dynamics of pertussis
transmission across different geographical contexts. Luz et al.
(2006) applied a classic compartmental model assuming
complete immunity after recovery, incorporating age structure
to simulate transmission in Sdo Paulo, Parana, and Bahia, Brazil.
Safan et al. (2022) extended this framework by incorporating
reinfection and vaccination, with reinfection assumed to be less
probable than primary infection. Russell et al. (2021) compared
four dynamic models, some accounting for lifelong immunity
and others allowing repeat infection, and incorporated age
structuring to evaluate maternal pertussis immunization in
Brazil. Meanwhile, Ameri and Cooper (2019) adopted a
network-based approach, introducing an “exposed but not yet
infectious” compartment and modeling interactions among
individuals within a scale-free network. Building on insights
from these prior studies, the present study integrates the
possibility of reinfection, accounts for vaccination and
underreporting, and distinguishes between exposed non-
infective and infectious individuals to develop a pertussis
transmission model tailored to the Philippine setting.

To our knowledge, no similar models have been developed for
the Philippines to describe pertussis transmission or evaluate the
impact of vaccination. Because disease dynamics and
vaccination outcomes are influenced by local demographics and
healthcare practices, developing a country-specific model is
important in providing context-relevant insights that can guide
immunization strategies and policy decisions. This baseline
study, therefore, characterizes pertussis transmission dynamics
in the Philippines using national incidence data from 2017 to
2019. By estimating the degree of underreporting and assessing
the overall effectiveness of the vaccination program, it offers
preliminary evidence for strengthening pertussis control and

management, insights that may also apply to other Southeast
Asian countries facing comparable epidemiological challenges.

METHODS

Pertussis Transmission Model

We used a modified SEIRS model that accounts for both
reinfection and vaccine-induced protection, following the
framework described by Campbell et al. (2015). The Susceptible
(S) compartment represents individuals at risk of infection,
while the Exposed (E) compartment consists of those in the
latent period. Infectious individuals (I) recover into the
Recovered (R) compartment, gaining temporary immunity. The
Vaccinated (V) compartment includes individuals who have
gained protection mainly through vaccination. Immunity wanes
over time, returning individuals to susceptibility. Reinfection
was assumed to be less likely than primary infection (Campbell
et al. 2015; Safan et al. 2022). Figure 1 illustrates the pertussis
transmission  dynamics, with  transitions  between
epidemiological states governed by the following differential
equations:

ds
d—tl =-AS,(I + I,) — vS;
T wyR + wyV —0AS,(I; + 1) — vS,
dE A
d—tl =551l +1) - oF;
dE. A
d—tz =052l + 1) — oF,
dat =0k, -yl
ar =ok; -yl
dR
ar =yl +yl; —wyR
dav
T —wyV +vS8; +vS,
dInc A

A
dt =¢N51(11 +12)+¢9N52(11 +1)

Table 1 shows the summary of the model parameter values,
which were either fitted, assumed, or sourced from the literature,
along with the initial conditions for the state variables. The

.ol . .
equation d—"tc denotes the rate of change in the incidence of

infection per unit time, which was used to derive the weekly
cumulative incidence. To capture reinfection dynamics, we
modeled two levels of exposure: individuals with no prior
infection (represented by subscript 1) and those who were
previously infected or vaccinated (represented by subscript 2).
Subsequent reinfections were not explicitly represented to
maintain model tractability and reduce parameter uncertainty.
For individuals with a history of pertussis infection,
susceptibility was assumed to be reduced by a factor of 8. The
parameters A, g, ¥, w, and v denote the transmission, latent,
recovery, immunity loss, and vaccine-induced protection or
simply protection rates, while ¢ serves as a scaling factor to
account for the underreporting of the incidence of pertussis. It
was assumed that the population (V) was constant throughout
the simulation period.
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Table 1: Summary of model parameters and initialization for the state variables.

Definition Parameter Value Reference
Transmission rate 1 See Table 2 Fitted
Reporting factor ¢ See Table 2 Fitted
;;?gcme-mduced protection v See Table 2 Fitted
. 1 (Centers for Disease Control
Latent period - 1.14 weeks and Prevention, 2024)
1 (von Konig et al. 2002;
Infectious period - 3 weeks Centers for Disease Control
14 and Prevention 2024)
. . . . 1
Waning immunity duration — 782.7 weeks (Wendelboe et al. 2005)
after infection Wy
. . . . 1
Waning immunity duration — 381.4 weeks (von Kénig et al. 2002)
after vaccination Wy
Reduced .sus.ceptlbﬂlty factor 0 0.5 Assumed
due to prior infection*®
Population N 106.7,108.6,110.4 million (World Bank 2025)
Imt"lal susceptible population $,(0) 97.9999% of N Assumed
(naive)*
Initial susceptible population
(with history of infection)* 52(0) 0 Assumed
Imt"lal exposed population E,(0) 0 Assumed
(naive)
Initial exposed population
(with history of infection) E2(0) 0 Assumed
Imt"lal infectious population 1,(0) 0.0001% of N Assumed
(naive)*
Initial infectious population
(with history of infection) 1(0) 0 Assumed
Initial recovered population R(0) 0 Assumed
Derived from WHO-reported
vaccine coverage data for
Initial vaccine-protected v(0) 2% of N infants and young children

population*®

Notes: *Varied in the sensitivity analysis; WHO, World Health Organization.

1l 14
S ~ E; —— I R H
v ______‘E 3 y
wy ! : Wy
04 | [
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Figure 1: Schematic representation of pertussis transmission. S,

susceptible; E, exposed; /, infectious; R, recovered; and V, vaccinated.

The subscript "2" indicates prior infection or vaccination. The
susceptibility of previously infected or vaccinated individuals is
reduced by a factor of 6 relative to naive susceptibles. Parameters A,
o, ¥, w, and v represent transmission, latent, recovery, immunity loss,
and vaccine-induced protection rates, while ¢ accounts for

underreporting. Solid lines indicate movement between compartments,

while dashed lines denote indirect influences on transitions. Table 1
shows the summary of the model parameter values and initial
conditions.

Mathematical Analysis of the Pertussis Transmission Model
To gain insight into the qualitative behavior of the system, we
performed a mathematical analysis of the model. We derived the
disease-free equilibrium (DFE) and the basic reproduction
number R, via the next-generation matrix approach (van den
Driessche and Watmough 2002). Stability of the DFE was
analyzed using the computed R, and the condition for the
existence of the endemic equilibrium was determined.

(2017-2019) (World Health
Organization 2024), adjusted
for population demographics

Model Calibration

We solved the model using MATLAB’s built-in solver ode45
(The MathWorks Inc. 2024). The parameters A, v, and ¢ were
estimated by fitting the model to the national weekly cumulative
pertussis case reports for each year (from 2017 to 2019),
obtained from the Department of Health (DOH) published data
(Department of Health 2024). More details regarding the dataset
are provided in the Supporting Information. Parameter
estimation was performed using the least squares approach
implemented via the Isgcurvefit function in MATLAB. Based on
the WHO-reported vaccine coverage data for infants and young
children during 2017-2019 (World Health Organization 2024),
we estimated that approximately 2% of the population was
protected by vaccination. Seroprevalence data suggest
substantial underreporting of pertussis, with incidence estimated
to be 100-3000 times higher than reported in Italy (Bagordo et
al. 2023) and about 100 times higher among older adults in five
Latin American countries (Guzman-Holst et al. 2023). Guided
by this evidence and adopting a less conservative approach, we
constrained v to 0.005-0.05 and ¢ to 0.0003-0.10. Initial
parameter values for A, v, and ¢ were generated using Latin
Hypercube Sampling (LHS), with 1000 parameter combinations
sampled.

Model Outputs and Sensitivity Analysis

From the best-fit model, we estimated yearly pertussis incidence
and compared it with reported cases over the study period.
Uncertainty in both incidence and parameter estimates was
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quantified using a nonparametric bootstrapping approach (Efron
and Tibshirani 1993), wherein 1000 resampled datasets were
generated from the original cumulative time series. Since the
cumulative incidence represents an aggregated model input
derived from limited empirical data rather than individual-level
observations, its underlying distribution is uncertain. Therefore,
a nonparametric bootstrapping approach was employed to
estimate uncertainty without assuming any specific probability
distribution.

The partial rank correlation coefficient (PRCC) method was
carried out to analyze the sensitivity of the model output to
individual parameters. Each parameter was assigned a uniform
distribution and sampled independently. Parameter ranges were
set as either £50% of the base case values or according to the
95% confidence intervals of the fitted parameters. A total of
1000 simulations were performed to examine how the model
output changes over time.

To assess the impact of vaccination (v) across varying levels of
pertussis transmission (1), we estimated the cumulative
incidence for each pair of parameter values. The protection and
transmission rates were varied from 0.9 to 1.1 times their base
case values. Additionally, we evaluated the model sensitivity by
analyzing incidence estimates across different scenarios,
including the initial infectious proportions (1072, 107, 1076,
1078, 1071%). We also varied the proportions of naive
susceptibles and previously infected susceptible individuals (0.5
and 0.5, 0.6 and 0.4, and 0.4 and 0.6), and the initial proportion
of protected individuals (ranging from 0.1 to 0.9 in increments
of 0.1), to assess how differences in baseline susceptibility and
immunity influence the fitted parameters.

RESULTS

The model was shown to be both nonnegative and bounded,
indicating that all the state variables stay biologically feasible at
all £~0. The basic reproduction number was derived as Ry =

A8 ( w .
7((‘) ‘;v), representing the average number of secondary
14

infections produced by a single infectious individual. The DFE
is locally asymptotically stable when Ry < 1 and becomes
unstable when R, > 1 that leads to the existence of an endemic
equilibrium. Detailed proofs and derivation of R, equilibrium
points, and their stability are provided in the Supporting
Information.

The pertussis transmission model fit well to the cumulative all-
age incidence of pertussis infection in the Philippines from 2017
to 2019 (Figure 2). The model closely aligned with the observed
data, indicating that it effectively captured the overall trend in
pertussis transmission. The estimated parameters, summarized
in Table 2, include the transmission rate (4), protection rate (v),
and reporting factor (¢). The estimated protection rates for 2017,
2018, and 2019 were approximately 0.002, 0.03, and 0.002,
respectively. The corresponding transmission rates were around
0.40, 0.70, and 0.40. The reporting factor varied from 0.02 to
0.09. The estimated incidence rates per 100,000 population were
approximately 4 (95% CI: 1, 29) in 2017, 10 (95% CI: 3, 427)
in 2018, and 2 (95% CI: 1, 7) in 2019, which were substantially
higher than the reported incidence rates. The estimated basic

reproduction numbers for the period were less than 0.3. The
highest proportion of infectious individuals was observed in
2018, whereas the lowest was recorded in 2019. Similarly, the
proportion of protected individuals peaked in 2018, while
substantially lower proportions were observed in 2017 and 2019
(Figure S3 in the Supporting Information).
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Figure 2: Observed weekly all-age cumulative incidence of pertussis
in the Philippines and the fitted pertussis model from 2017 (A) to 2019
(C). The shaded areas indicate the 95% confidence intervals derived
from the nonparametric bootstrap simulations.

Table 2: Best-fit model parameters estimate and corresponding modeled incidence rates in the Philippines, 2017—-2019, with 95% confidence intervals

from bootstrap simulations.

Estimated incidence
Year A v (o) rate*
2017 0.403 0.002 0.020 4
(95% CI: 0.396, 0.680) (95% CI: 0.0005, 0.021) (95% CI: 0.002, 0.0348) (95% CI: 1, 29)
2018 0.695 0.027 10
(95% CI: 0.479, 1.336) 0.028 (95% CI: 0.0007, 0.1) (95% CI: 3,427)
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(95% CI: 0.013, 0.05)

0.362 0.002

2019 (95% CI: 0.348, 0.545) | (95% CI: 0.000, 0.017)

0.094 2
(95% CI: 0.023, 0.1) (95%CL: 1, 7)

Notes: *per 100,000 population and adjusted; The parameters A, v, and ¢ represent the transmission rate, protection rate, and reporting rate, respectively (see Figure

S2 for the distribution); CI, confidence interval.

Sensitivity analysis showed that the model’s incidence estimates
were highly sensitive to the initial proportion of infectious
individuals, with higher initial values resulting in substantially
higher incidence (Figure 3). This pattern was associated with a

reduction in the estimated transmission rate, reporting rate, and
protection rate with increasing initial values. Note that extreme
values of the initial proportion of infectious individuals resulted
in a poor model fit.
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Figure 3: Estimated number of pertussis cases (adjusted) and values of transmission rates (A), reporting rates (¢), and protection rates (v) for varying

initial proportions of infectious individuals, across 2017 to 2019.

Varying the proportions of naive and previously infected
susceptible populations resulted in only small changes in the
fitted parameter estimates across all years. The parameters ¢
and v remained nearly unchanged, reflecting low sensitivity to
assumptions about the initial distribution of susceptibility.
Moreover, increasing the proportion of previously infected
individuals resulted in lower estimates of A, indicating reduced
effective transmission potential with greater partial immunity.
Across all years, the reporting rate parameter was the least
sensitive, while the other fitted parameters were largely
unchanged at lower values of the initial protected proportion but
increased as this proportion rose. Details of the results are
provided in Tables S1 and S2 of the Supporting Information.

Across the period of interest, the PRCC analysis consistently
identified transmission (1), reporting (¢), protection (v), and
recovery (y) rates as the most influential parameters affecting
cumulative incidence. The parameters A and ¢ exhibited strong
positive correlations, while y and v demonstrated strong
negative correlations (Figure 4). Sensitivity analyses further
revealed that the relationship between protection and
transmission rates varies across different transmission
intensities. Higher transmission levels require proportionally
greater vaccination protection to effectively control pertussis
incidence, as illustrated in Figure 5 over the three-year period.
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Figure 4: Partial rank correlation coefficients (PRCCs) of model parameters with respect to time-varying and final cumulative incidence for 2017 (A),

2018 (B), and 2019 (C).

In 2017, a period of lower protection and a less severe outbreak,
a 0.03 increase in the transmission rate doubled the baseline
cumulative incidence. A slight increase of 0.0001 in v produced
a similar base case outcome, but only for small changes in the
baseline transmission rate. In 2018, with higher protection and a
higher baseline transmission rate, a 0.06 increase in transmission
doubled the incidence, while a 0.005 increase in v yielded a
similar base case outcome under slightly elevated transmission

rates. In 2019, when protection levels were comparable but
transmission was lower than in 2017, a 0.03 increase in
transmission again doubled the baseline incidence, and a 0.0001
increase in v resulted in a similar base case outcome, though at
slightly lower transmission levels than in 2017 (Figure 5).
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Figure 5: Heatmap with contour overlays of annual cumulative
pertussis incidence under varying vaccination and transmission rates
from 2017 to 2019.

DISCUSSION

We developed an SEIRS model accounting for the impact of
vaccination and potential underreporting of pertussis cases to

capture the dynamics of pertussis transmission in the Philippines.

The model fit to the cumulative all-age pertussis incidence data
from 2017 to 2019 demonstrates that it can reasonably describe
observed trends in pertussis epidemiology, despite limited
surveillance data. Our findings suggest that the true incidence of
pertussis is approximately 10 to 40 times higher than reported
cases, with uncertainty estimates suggesting it could be more
than 1000-fold higher, underscoring considerable disease
surveillance gaps. The transmission rate, protection rate,
reporting factor, and recovery rate were found to be the most
influential parameters shaping the transmission dynamics.

Our analysis broadly aligns with findings from other settings
where pertussis cases were underestimated. Studies across

different populations have shown that the true incidence often
exceeds reported cases by several orders of magnitude, with
estimates ranging from hundreds to thousands of times higher
(Bagordo et al. 2023; Guzman-Holst et al. 2023). These apparent
discrepancies in the reported incidence of pertussis conceal a
much higher level of ongoing transmission. This highlights the
limitations of existing surveillance systems and emphasizes the
need for improved case detection methods, such as serological
surveys and enhanced syndromic surveillance, to obtain more
accurate estimates of pertussis burden and to better inform
control strategies.

Consistent with previous studies (Safan et al. 2022; Domenech
de Celles et al. 2018; Althouse & Scarpino 2015), we identified
the protection rate as a key parameter influencing pertussis
transmission. Higher protection levels reduce susceptibility and
limit spread, whereas lower protection levels increase the
potential for outbreaks. Although estimated R, values are
modest compared with those reported by Cherry et al. (2013),
there remains a risk of outbreak resurgence (Wang et al. 2025),
particularly if protection levels decline. The protection rate
becomes particularly critical during severe outbreaks, where
maintaining high levels of protection is essential, as declines in
immunity can trigger increases in case numbers. Alongside the
protection rate, the recovery rate was found to be a key factor,
with faster recovery shortening the infectious period and curbing
onward spread. Collectively, these findings underscore the need
for robust public health strategies that promote adherence to
recommended immunization schedules and ensure the timely
administration of booster doses to maintain durable population
immunity against pertussis.

Model results indicate an increase in the protection rate in 2018
that coincides with the nationally reported rise in pertussis cases
(World Health Organization 2024), possibly as a result of a
stronger public health response during that year. The
transmission rate also peaked in 2018, while underreporting
remained high but was notably lower than in the previous year.
By 2019, the protection rate had returned to the 2017 level,
accompanied by a marked improvement in reporting, likely
reflecting enhanced surveillance efforts following the rise in
2018. However, these results should be interpreted with caution,
given the simplified model structure, potential parameter non-
identifiability, and limitations in the quality of the available
epidemiological data. Further studies are needed to validate
these findings.

This study has several limitations. First, our analysis was based
on all-age weekly cumulative incidence data from 2017 to 2019.
A more granular, age-stratified dataset spanning a longer
timeframe could provide deeper insights into pertussis
transmission across different population groups and improve
estimates of vaccination impact by age. Moreover, incorporating
more localized data (e.g., from specific cities or municipalities)
could capture regional variations in transmission dynamics and
strengthen the overall analysis. Second, our model does not
explicitly distinguish between symptomatic and asymptomatic
infections. Since asymptomatic or mild cases often go
unreported but may significantly contribute to sustained
transmission, incorporating these infections into future models
could refine estimates of pertussis spread. Third, we did not
account for seasonal variations in transmission. Considering
time-varying transmission rates could improve our
understanding of temporal fluctuations in pertussis incidence
and enhance the accuracy of model predictions. Finally, while
we evaluated the overall impact of vaccination, we did not
explore specific vaccination strategies. Future research should
assess targeted control strategies to identify optimal approaches
for reducing pertussis incidence.
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CONCLUSION

This study revealed a potential underreporting of pertussis in the
Philippines, with the true incidence estimated to be about 10 to
40 times higher than reported, highlighting the need for
enhanced surveillance systems and improved case detection to
obtain more reliable incidence estimates. While pertussis
vaccination has contributed to controlling disease spread, it
would be beneficial for future efforts to focus on expanding
vaccination coverage, sustaining high population immunity, and
strengthening targeted strategies, such as booster campaigns or
maternal and adult immunization, to further enhance pertussis
control.
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SUPPORTING INFORMATION

Data Description and Preprocessing Techniques

The weekly reported pertussis cases from 2017 to 2019 were
obtained from the Weekly Disease Surveillance Report of the
Department of Health Epidemiology Bureau. The original
dataset consisted of 156 observations, including 16 missing
values, which were imputed using the linear interpolation
technique (Moritz and Bartz-Beielstein 2017). This method
estimates missing values by connecting adjacent observed data
points with straight lines and assigning intermediate values
proportionally between them, thereby preserving the overall
trend and continuity of the time series. The figure below shows
the time series of the weekly reported cases from 2017 to 2019.
It can be observed that the highest number of pertussis cases was
recorded in the 20" week of 2018. It can also be observed that
pertussis cases usually spike at the last quarter of the year
(September to December).
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Figure S1: Weekly reported pertussis cases in the Philippines from
2017 to 2019.

Supporting information related to Results

Mathematical Analysis of the Pertussis Transmission Model
Positivity and Boundedness of Solutions

Theorem 1.

If $;(0), S,(0), E;(0), E;(0),1,(0),1,(0), R(0),V(0) = 0 then
S1(), S, (1), E1 (), E; (1), I, (1), I,(t),R(t),V(t) = 0 for all
t > 0 and every solution of the system described starting in 2 =
{(51,83,E1,E5, I, 1,,R,LV)ERS:N =S, + S, + E; + E, +
I, + I, + R+ V} remains in 2 forall t > 0.

Let the parameters 4,6,0,y,w_N,w_V,v =0 and the initial
conditions

51 (0), SZ (O)r El(O)r EZ (O)r 11(0)! 12 (0), R(O)v V(O) = 0. The
first conclusion is proved by contradiction. Suppose, one of the
state variables, say xj(t), becomes negative at some t >
0. Because the variables are continuous, there must exist a first
time t* > 0 at which x; (t) satisfies the following:

1. x,(t*) =0,and
2. x,(t) <0 for some ¢ just after t*.

At time t*, all other variables are still nonnegative. We will
show that the derivative at the point where the variable reaches
zero is nonnegative (i.e., it cannot decrease below 0 after t™).

LIfS () = 0then St = =25,y + 1) — vs, = 0.
2. I S,(t7) = 0 then 22 = wyR + w,V — 025, +
L) —vS;, = wyR + w,V = 0.

dE. A
A= 281( + 1) — oF; =

3. If E;(t*)=0 then
AS,(I, + 1) > 0.

4. If E,(t*) =0 then
025, (I +1) 2 0.

5. IfL(t") = 0 then* = 0F, —yl;, = 0F; 2 0.

6. IfL,(t") = 0 then <2 = 0F, — yI, = 0E; > 0.

7. If R(t") =0 then 5 =y(I; + ;) — wyR = y(Iy
L) =0.

8. If V({t)=0 then ‘;—‘; =
v(S; +S3) = 0.

L = 922 (I, + 1) — oF,

+

—wyV +vS8; +vS, =

We can see that in each case, when a variable first becomes 0,
its derivative becomes nonnegative, implying that the variable
cannot decrease below zero after t*. This contradicts our
assumption that the variable becomes negative at some t > 0.
Therefore, S;(t),S,(t), E1(t), E;(t), I, (1), I, (t),R(t),V(t) =
0 forallt > 0.

Now for the second part of the conclusion, let N(t) = S;(t) +
S;,()+E, () +E,(t) + (1) + L, () + R(t) + V(t) be the
total number of individuals in all compartments at time ¢.
Differentiating N,

dN _dSy  dS,  dEy dE, dl dl, dR dV
dt dt dt dt T dt | de ' de Tde | de

A
= (-45 G+ 1) -vs,)
+ (wyR + wyV — 0AS,(I; + 1) — vS,)

b}
+ (Nsl(’l +1) - 0E1>

A
+ (eﬁsz(z1 + 1) — 0E2> + (0E, — y1) + (0E, — y1,)

+ (L + I;) — wyR)
+ (—wyV +vS; +vS,) =0.

Integrating both sides gives N(t) = N(0),Vt = 0, implying
that the total population remains constant over time. Clearly,
every value of each variable lies between 0 and N(0), then the
solution (Sy,S,, E1, Ey, I1, 1, R, V) stays in a bounded region of
the nonnegative space for all £ > 0. Hence, the system is
bounded.

Local Stability of Disease-Free Equilibrium (DFE)

The disease-free equilibrium (DFE) is a state at which the
disease is not present in the population. In other words, E; =
E, =1, = I, = 0. The remaining steady-state equations are as
follows:

0= _V§1 ( rom %)
0= a)NE + a)VV - 175_‘2 ( rom %)
0= —wNE (from Z_I:)
0= —a)VV + U§1 + 175_‘2 (from (cii_‘:)

Assuming wy, wy =0and v>0then R=0,5 =0,V =
_SZ

wy

Note that 52 +V =N; thus glvmg the DFE: S, = E, = E, =
L=L=R=0,5,= v

’ wy+v
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To establish the local stability of the DFE, we used the basic
reproduction number, R,. Following the next-generation
method, we considered the disease-related
classes/compartments.

x = (Eq, Ep, 11, Iy).

We set up new infection vector F(x) and transmission vector
V(x). New infections enter only the exposed compartments.

A

F = NS1(11 + 1)
64

F,= Wsz(h +15)

Fy=F, =0.

Non-infection transitions are:

Vi = oE;
V, = ok,
Vs =yl — ok

Vo=v I, -0k,

Now we compute the Jacobians F =D,F and V =D,V
evaluated at the DFE.

/15_ /1§
00 Nl Nl
_|0 0 6A_ 64_
F= WSZ Wsz
00 0 0
0 0 0 0
g 0 00
| 0 ¢ 00
=1_6 o y 0
0 -0 0 vy
1
- 0 0 0
o
1
0 - 0 0
vit=lr
-0 -0
14 14
1 1
0 - 0 -
14 14

We now form the next generation matrix K = FV ™1

AS,  AS,  AS,  AS;
Ny Ny Ny Ny
Kk =| 045, 615, 615, 015,
Ny Ny Ny Ny
0 0 0 0
0 0 0 0

Ry = p(K) or the spectral radius of K is N%(S_1+ 9&)

A8 wy

Substituting the values of S; and S,, we have Ry = = :
V4 (1)V+'U

Existence of the Endemic Equilibrium (EE)

We set all derivatives to zero at EE and assume that [ = I; +

I, > 0.

’_ = _AS 7 oo F_ 05 _ASy

From E; =0, El;_zval' Fronlil1 =0, Il_yEl__NyI'
. = _ 05T T 0AS,I
Similarly, E, = Vo and [, = N

Thus, [ =1, + 1, = Niy(s‘1 +0S)I.
With T>0, Niy (5, +65,) =1, which is the endemic
equilibrium condition. From R0, R=LT
dt wN
a5 _ 0 T = as; _ ] 7=0cry

Frgm pr 0, S; = 0. From i 0, wyR + wyV = m S,I +
Vs,
Lastly, with V' = 0,7 = —(§; + §;) = —35,. Then, §, = &

wy wy

o1’
> V yN

YN 5 _ Y7
S RTut
N=S+E+E+L+L+R+7.
N—%(Hmlv)

Yo+ L
o Wy

For the EE to exist biologically, N > My (1 + L) or Ry > 1.
oA wy

Hence, | =
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Figure S2: Distributions of the parameter estimates 2 ,
¢, and v obtained through 1000 bootstrapped resamples generated
via nonparametric sampling of cumulative reported incidence of
pertussis in the Philippines, from 2017 to 2019.

%10 A) Infectious
T T

Proportion
S o @ - [N
—
. 1

©
T

1 . | | . L L
20 25 30 35 40 45 50
Time (weeks)

°
s
2k

B) Protected
T T

08 T

- - 2017 ---1

(] —= q
06 — 4

Sos| -

Soaf -

S

&03f - 4
02

R —— Losss====sz=====z=z=====337

. .
0 5 10 15 20 25 30 35 40 45 50
Time (weeks)

Figure S3: Estimated weekly number of A) infectious and B) protected
individuals in the Philippines, from 2017 to 2019.
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Table S1: Fitted parameter values when varying the proportions of initial naive susceptibles (S;) and previously infected individuals (S,).

S1 | S2 | 1 | ¢ | v

2017

0.5 0.5 0.5387 0.0198 0.0021

0.6 0.4 0.5773 0.0198 0.0021

0.4 0.6 0.5049 0.0199 0.0021
2018

0.5 0.5 0.9349 0.0263 0.0286

0.6 0.4 1.0043 0.0261 0.0287

0.4 0.6 0.8746 0.0264 0.0284
2019

0.5 0.5 0.4825 0.0935 0.0016

0.6 0.4 0.4523 0.0936 0.0016

0.4 0.6 0.5171 0.0935 0.0016

Table S2: Fitted transmission rate (1) when varying the proportion of initial protected individuals (V).
Initial  proportion  of

protected individuals ALY AL A
0.1 0.440 0.759 0.394
0.2 0.495 0.856 0.443
0.3 0.566 0.983 0.507
0.4 0.660 1.154 0.591
0.5 0.793 1.397 0.709
0.6 0.992 1.771 0.887
0.7 1.325 2421 1.183
0.8 1.995 3.853 1.776
0.9 4.045 7.352 3.565

Table S3: Fitted protection rate (v) when varying the proportion of initial protected individuals (V).
Initial  proportion  of

protected individuals ALY AL A
0.1 0.020 0.027 0.094
0.2 0.020 0.027 0.094
0.3 0.020 0.026 0.094
0.4 0.020 0.026 0.094
0.5 0.020 0.025 0.094
0.6 0.020 0.024 0.093
0.7 0.020 0.023 0.093
0.8 0.019 0.019 0.093
0.9 0.019 0.009 0.093

Table S4: Fitted protection rate (v) when varying the proportion of initial protected individuals (V).
Initial  proportion  of

protected individuals ALY AL A
0.1 0.002 0.028 0.002
0.2 0.002 0.029 0.002
0.3 0.003 0.029 0.002
0.4 0.003 0.030 0.002
0.5 0.003 0.031 0.003
0.6 0.004 0.033 0.004
0.7 0.005 0.035 0.005
0.8 0.008 0.042 0.007
0.9 0.015 0.068 0.014
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