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ABSTRACT 
 
 

ertussis, a highly contagious respiratory disease, poses 
a significant health threat across all ages, with infants 
younger than one year of age facing the highest risk of 
hospitalization and death. In the Philippines, pertussis 
caused 48 deaths among 705 reported cases in 2023. 

While these numbers appear modest, they likely reflect 
substantial underreporting given the presumed circulation of the 
disease, raising concerns about the true extent of the pertussis 
burden. Modeling efforts can improve our understanding of 
pertussis transmission dynamics and help assess the impact of 
vaccination; however, such a comprehensive mathematical 
analysis has been lacking in the country. We developed a 
Susceptible-Exposed-Infectious-Recovered-Susceptible 
(SEIRS)-based model that incorporates varying exposure levels 
to analyze pertussis transmission dynamics, calibrated using 
national epidemiological data from 2017 to 2019. Our model 
captured the observed pertussis epidemic trends and revealed 
that actual pertussis cases may be 10–40 times higher than 
reported. The model also demonstrated that maintaining a high 
level of protection is crucial for preventing case surges, as lower 
protection levels increase susceptibility and outbreak potential. 
The substantial underestimation of pertussis incidence and the 
projected impact of vaccination together highlight the need for 
enhanced surveillance systems and strengthened pertussis 

immunization programs. Our study provides important insights 
into pertussis epidemiology in the Philippines and in the 
Southeast Asian region, offering a foundation for evidence-
based public health policies aimed at achieving more effective 
pertussis control. 
 
 
INTRODUCTION 
 
Pertussis or whooping cough, caused by Bordetella pertussis, is 
a highly contagious respiratory disease that remains a significant 
public health concern. In 2022, an estimated 62,000 cases were 
reported globally, with more than half occurring in the Western 
Pacific Region (World Health Organization, Regional Office for 
the Western Pacific 2025). In the Philippines, 705 cases were 
recorded in 2023, leading to 48 deaths (Department of Health 
2024). Although these figures appear modest, they likely 
underestimate the true incidence due to underreporting, given 
the high transmissibility potential of pertussis (Cherry et al. 
2013). Despite widespread vaccination efforts (World Health 
Organization 2025), pertussis continues to circulate, 
highlighting the need for a better understanding of its 
transmission dynamics.  
 
Vaccination continues to be the most effective strategy for 
preventing pertussis (Schuchat 2011). Both natural infection and 
vaccination provide temporary immunity, with infection-
induced protection lasting for 15 to 20 years and vaccination-
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induced immunity ranging from 5 to 30 years (Wirsing von 
König et al. 2002; Wendelboe et al. 2005; Russell et al. 2021). 
The DTaP (Diphtheria, Tetanus, and Pertussis) and Tdap 
(Tetanus, Diphtheria, and acellular Pertussis) vaccines protect 
against pertussis, with DTaP given in five doses to children up 
to age 7 and Tdap given as a booster for adolescents (11–12 
years) and adults every 10 years (Centers for Disease Control 
and Prevention 2025). In the Philippines, the Department of 
Health (DOH) offers free diphtheria-tetanus-pertussis 
immunization beginning at six weeks of age (Department of 
Health 2025; UNICEF Philippines 2025). In 2019, vaccination 
coverage for children aged 12–23 months reached 71%, up from 
69% in 2017 and 65% in 2018 (World Health Organization 
2024). 
 
Accurate disease incidence data are vital for public health 
decision-making. However, pertussis is often underreported due 
to factors such as misdiagnosis, inadequate surveillance, and 
asymptomatic or mild cases going unnoticed (Meadows et al. 
2022). In some countries, actual incidence rates may be 
significantly higher than reported (Bagordo et al. 2023; 
Guzman-Holst et al. 2023), making it challenging to assess the 
true impact of the disease and potentially influencing how 
interventions and resources are prioritized.  
 
Dynamic modeling is a powerful tool for understanding disease 
transmission and assessing the population-level impact of 
vaccination programs (Hethcote 2000). These models account 
for the dynamic nature of infection spread by assuming that the 
rate at which susceptible individuals become infected depends 
on the number of infectious individuals in the population (Jit and 
Brisson 2011), providing a more realistic representation of 
transmission. Additionally, dynamic models capture nonlinear 
effects, such as herd immunity, which is crucial for accurately 
evaluating the impact of vaccination strategies on disease burden 
(Hethcote 2000). 
 
Several studies have explored the dynamics of pertussis 
transmission across different geographical contexts. Luz et al. 
(2006) applied a classic compartmental model assuming 
complete immunity after recovery, incorporating age structure 
to simulate transmission in São Paulo, Paraná, and Bahia, Brazil. 
Safan et al. (2022) extended this framework by incorporating 
reinfection and vaccination, with reinfection assumed to be less 
probable than primary infection. Russell et al. (2021) compared 
four dynamic models, some accounting for lifelong immunity 
and others allowing repeat infection, and incorporated age 
structuring to evaluate maternal pertussis immunization in 
Brazil. Meanwhile, Ameri and Cooper (2019) adopted a 
network-based approach, introducing an “exposed but not yet 
infectious” compartment and modeling interactions among 
individuals within a scale-free network. Building on insights 
from these prior studies, the present study integrates the 
possibility of reinfection, accounts for vaccination and 
underreporting, and distinguishes between exposed non-
infective and infectious individuals to develop a pertussis 
transmission model tailored to the Philippine setting.  
 
To our knowledge, no similar models have been developed for 
the Philippines to describe pertussis transmission or evaluate the 
impact of vaccination. Because disease dynamics and 
vaccination outcomes are influenced by local demographics and 
healthcare practices, developing a country-specific model is 
important in providing context-relevant insights that can guide 
immunization strategies and policy decisions. This baseline 
study, therefore, characterizes pertussis transmission dynamics 
in the Philippines using national incidence data from 2017 to 
2019. By estimating the degree of underreporting and assessing 
the overall effectiveness of the vaccination program, it offers 
preliminary evidence for strengthening pertussis control and 

management, insights that may also apply to other Southeast 
Asian countries facing comparable epidemiological challenges. 
 
METHODS 
 
Pertussis Transmission Model 
We used a modified SEIRS model that accounts for both 
reinfection and vaccine-induced protection, following the 
framework described by Campbell et al. (2015). The Susceptible 
(S) compartment represents individuals at risk of infection, 
while the Exposed (E) compartment consists of those in the 
latent period. Infectious individuals (I) recover into the 
Recovered (R) compartment, gaining temporary immunity. The 
Vaccinated (V) compartment includes individuals who have 
gained protection mainly through vaccination. Immunity wanes 
over time, returning individuals to susceptibility. Reinfection 
was assumed to be less likely than primary infection (Campbell 
et al. 2015; Safan et al. 2022). Figure 1 illustrates the pertussis 
transmission dynamics, with transitions between 
epidemiological states governed by the following differential 
equations: 
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Table 1 shows the summary of the model parameter values, 
which were either fitted, assumed, or sourced from the literature, 
along with the initial conditions for the state variables. The 
equation &'()

&*
 denotes the rate of change in the incidence of 

infection per unit time, which was used to derive the weekly 
cumulative incidence. To capture reinfection dynamics, we 
modeled two levels of exposure: individuals with no prior 
infection (represented by subscript 1) and those who were 
previously infected or vaccinated (represented by subscript 2). 
Subsequent reinfections were not explicitly represented to 
maintain model tractability and reduce parameter uncertainty. 
For individuals with a history of pertussis infection, 
susceptibility was assumed to be reduced by a factor of 𝜃. The 
parameters 𝜆, 𝜎 , 𝛾 , 𝜔, and 𝑣	 denote the transmission, latent, 
recovery, immunity loss, and vaccine-induced protection or 
simply protection rates, while 𝜙 	serves as a scaling factor to 
account for the underreporting of the incidence of pertussis. It 
was assumed that the population (N) was constant throughout 
the simulation period.  
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Table 1: Summary of model parameters and initialization for the state variables. 
Definition Parameter Value Reference 

Transmission rate 𝜆 See Table 2 Fitted  

Reporting factor 𝜙 		 See Table 2 Fitted 
Vaccine-induced protection 
rate 𝑣		 See Table 2 Fitted 

Latent period 1
𝜎	

1.14 weeks (Centers for Disease Control 
and Prevention, 2024) 

Infectious period 
1
𝛾  	 3 weeks 

(von König et al. 2002; 
Centers for Disease Control 
and Prevention 2024) 

Waning immunity duration 
after infection 

1
𝜔#

 	  782.7 weeks (Wendelboe et al. 2005) 

Waning immunity duration 
after vaccination 

1
𝜔+
 	  381.4 weeks (von König et al. 2002) 

Reduced susceptibility factor 
due to prior infection* 𝜃 0.5  Assumed  

Population 𝑁		 106.7,108.6,110.4 million (World Bank 2025) 
Initial susceptible population 
(naïve)∗  𝑆!(0)	 97.9999% of N  Assumed 

Initial susceptible population 
(with history of infection)* 𝑆"(0)	 0 Assumed 

Initial exposed population 
(naïve) 𝐸!(0)	 0 Assumed 

Initial exposed population 
(with history of infection) 𝐸"(0)	 0 Assumed 

Initial infectious population 
(naïve)* 𝐼!(0)	 0.0001% of N  Assumed  

Initial infectious population 
(with history of infection) 𝐼"(0)	 0 Assumed 

Initial recovered population  𝑅(0)	 0 Assumed 

Initial vaccine-protected 
population* 𝑉(0)	 2% of N 

Derived from WHO-reported 
vaccine coverage data for 
infants and young children 
(2017–2019) (World Health 
Organization 2024), adjusted 
for population demographics 

Notes: *Varied in the sensitivity analysis; WHO, World Health Organization. 

 
Figure 1: Schematic representation of pertussis transmission. S, 
susceptible; E, exposed; I, infectious; R, recovered; and V, vaccinated. 
The subscript "2" indicates prior infection or vaccination. The 
susceptibility of previously infected or vaccinated individuals is 
reduced by a factor of θ relative to naïve susceptibles. Parameters λ, 
σ, γ, ω, and v represent transmission, latent, recovery, immunity loss, 
and vaccine-induced protection rates, while ϕ accounts for 
underreporting. Solid lines indicate movement between compartments, 
while dashed lines denote indirect influences on transitions. Table 1 
shows the summary of the model parameter values and initial 
conditions. 

Mathematical Analysis of the Pertussis Transmission Model 
To gain insight into the qualitative behavior of the system, we 
performed a mathematical analysis of the model. We derived the 
disease-free equilibrium (DFE) and the basic reproduction 
number 𝑅,  via the next-generation matrix approach (van den 
Driessche and Watmough 2002). Stability of the DFE was 
analyzed using the computed 𝑅,  and the condition for the 
existence of the endemic equilibrium was determined.  

Model Calibration 
We solved the model using MATLAB’s built-in solver ode45 
(The MathWorks Inc. 2024). The parameters 𝜆, 𝑣	, and 𝜙 were 
estimated by fitting the model to the national weekly cumulative 
pertussis case reports for each year (from 2017 to 2019), 
obtained from the Department of Health (DOH) published data 
(Department of Health 2024). More details regarding the dataset 
are provided in the Supporting Information. Parameter 
estimation was performed using the least squares approach 
implemented via the lsqcurvefit function in MATLAB. Based on 
the WHO-reported vaccine coverage data for infants and young 
children during 2017–2019 (World Health Organization 2024), 
we estimated that approximately 2% of the population was 
protected by vaccination. Seroprevalence data suggest 
substantial underreporting of pertussis, with incidence estimated 
to be 100–3000 times higher than reported in Italy (Bagordo et 
al. 2023) and about 100 times higher among older adults in five 
Latin American countries (Guzman-Holst et al. 2023). Guided 
by this evidence and adopting a less conservative approach, we 
constrained 𝑣  to 0.005–0.05 and 𝜙  to 0.0003–0.10. Initial 
parameter values for 𝜆, 𝑣	, and 𝜙 were generated using Latin 
Hypercube Sampling (LHS), with 1000 parameter combinations 
sampled. 
 
Model Outputs and Sensitivity Analysis 
From the best-fit model, we estimated yearly pertussis incidence 
and compared it with reported cases over the study period. 
Uncertainty in both incidence and parameter estimates was 
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quantified using a nonparametric bootstrapping approach (Efron 
and Tibshirani 1993), wherein 1000 resampled datasets were 
generated from the original cumulative time series. Since the 
cumulative incidence represents an aggregated model input 
derived from limited empirical data rather than individual-level 
observations, its underlying distribution is uncertain. Therefore, 
a nonparametric bootstrapping approach was employed to 
estimate uncertainty without assuming any specific probability 
distribution. 
 
The partial rank correlation coefficient (PRCC) method was 
carried out to analyze the sensitivity of the model output to 
individual parameters. Each parameter was assigned a uniform 
distribution and sampled independently. Parameter ranges were 
set as either ±50% of the base case values or according to the 
95% confidence intervals of the fitted parameters. A total of 
1000 simulations were performed to examine how the model 
output changes over time.   
 
To assess the impact of vaccination (𝑣) across varying levels of 
pertussis transmission (𝜆), we estimated the cumulative 
incidence for each pair of parameter values. The protection and 
transmission rates were varied from 0.9 to 1.1 times their base 
case values. Additionally, we evaluated the model sensitivity by 
analyzing incidence estimates across different scenarios, 
including the initial infectious proportions (10-", 10-., 10-/, 
10-0 , 10-!, ). We also varied the proportions of naïve 
susceptibles and previously infected susceptible individuals (0.5 
and 0.5, 0.6 and 0.4, and 0.4 and 0.6), and the initial proportion 
of protected individuals (ranging from 0.1 to 0.9 in increments 
of 0.1), to assess how differences in baseline susceptibility and 
immunity influence the fitted parameters. 
 
 
RESULTS 
 
The model was shown to be both nonnegative and bounded, 
indicating that all the state variables stay biologically feasible at 
all t>0.  The basic reproduction number was derived as  𝑅, =
12
3
= 4!	
4!	5+

> , representing the average number of secondary 
infections produced by a single infectious individual. The DFE 
is locally asymptotically stable when 𝑅, < 1  and becomes 
unstable when  𝑅, > 1 that leads to the existence of an endemic 
equilibrium. Detailed proofs and derivation of 𝑅,, equilibrium 
points, and their stability are provided in the Supporting 
Information.  
 
The pertussis transmission model fit well to the cumulative all-
age incidence of pertussis infection in the Philippines from 2017 
to 2019 (Figure 2). The model closely aligned with the observed 
data, indicating that it effectively captured the overall trend in 
pertussis transmission. The estimated parameters, summarized 
in Table 2, include the transmission rate (𝜆), protection rate (𝑣), 
and reporting factor (𝜙). The estimated protection rates for 2017, 
2018, and 2019 were approximately 0.002, 0.03, and 0.002, 
respectively. The corresponding transmission rates were around 
0.40, 0.70, and 0.40. The reporting factor varied from 0.02 to 
0.09. The estimated incidence rates per 100,000 population were 
approximately 4 (95% CI: 1, 29) in 2017, 10 (95% CI: 3, 427) 
in 2018, and 2 (95% CI: 1, 7) in 2019, which were substantially 
higher than the reported incidence rates. The estimated basic 

reproduction numbers for the period were less than 0.3. The 
highest proportion of infectious individuals was observed in 
2018, whereas the lowest was recorded in 2019. Similarly, the 
proportion of protected individuals peaked in 2018, while 
substantially lower proportions were observed in 2017 and 2019 
(Figure S3 in the Supporting Information). 
 
 

 

 

 
Figure 2: Observed weekly all-age cumulative incidence of pertussis 
in the Philippines and the fitted pertussis model from 2017 (A) to 2019 
(C). The shaded areas indicate the 95% confidence intervals derived 
from the nonparametric bootstrap simulations. 

Table 2: Best-fit model parameters estimate and corresponding modeled incidence rates in the Philippines, 2017–2019, with 95% confidence intervals 
from bootstrap simulations. 

Year 𝜆 𝑣 𝜙 Estimated incidence 
rate* 

2017 0.403 
(95% CI: 0.396, 0.680) 

0.002 
(95% CI: 0.0005, 0.021) 

0.020 
(95% CI: 0.002, 0.0348)   

4 
(95% CI: 1, 29) 

2018 0.695 
(95% CI: 0.479, 1.336) 

 
0.028 

0.027 
(95% CI: 0.0007, 0.1) 

10 
(95% CI: 3, 427) 



 
                                                                         SciEnggJ                           Vol. 18 (Supplement) | 2025 366 

(95% CI: 0.013, 0.05) 

2019 0.362 
(95% CI: 0.348, 0.545) 

0.002 
(95% CI: 0.000, 0.017) 

0.094 
(95% CI: 0.023, 0.1)     

2 
(95% CI: 1, 7) 

Notes: *per 100,000 population and adjusted; The parameters 𝜆, 𝑣	, and 𝜙 represent the transmission rate, protection rate, and reporting rate, respectively (see Figure 
S2 for the distribution); CI, confidence interval.  
 
Sensitivity analysis showed that the model’s incidence estimates 
were highly sensitive to the initial proportion of infectious 
individuals, with higher initial values resulting in substantially 
higher incidence (Figure 3). This pattern was associated with a 

reduction in the estimated transmission rate, reporting rate, and 
protection rate with increasing initial values. Note that extreme 
values of the initial proportion of infectious individuals resulted 
in a poor model fit. 
 

 
Figure 3: Estimated number of pertussis cases (adjusted) and values of transmission rates (λ), reporting rates (ϕ), and protection rates (ν) for varying 
initial proportions of infectious individuals, across 2017 to 2019. 

Varying the proportions of naïve and previously infected 
susceptible populations resulted in only small changes in the 
fitted parameter estimates across all years. The parameters 𝜙 
and 𝑣 remained nearly unchanged, reflecting low sensitivity to 
assumptions about the initial distribution of susceptibility. 
Moreover, increasing the proportion of previously infected 
individuals resulted in lower estimates of λ, indicating reduced 
effective transmission potential with greater partial immunity. 
Across all years, the reporting rate parameter was the least 
sensitive, while the other fitted parameters were largely 
unchanged at lower values of the initial protected proportion but 
increased as this proportion rose. Details of the results are 
provided in Tables S1 and S2 of the Supporting Information. 
 

Across the period of interest, the PRCC analysis consistently 
identified transmission (𝜆), reporting (𝜙), protection (v), and 
recovery (𝛾) rates as the most influential parameters affecting 
cumulative incidence. The parameters  𝜆 and 𝜙 exhibited strong 
positive correlations, while 𝛾  and v demonstrated strong 
negative correlations (Figure 4). Sensitivity analyses further 
revealed that the relationship between protection and 
transmission rates varies across different transmission 
intensities. Higher transmission levels require proportionally 
greater vaccination protection to effectively control pertussis 
incidence, as illustrated in Figure 5 over the three-year period.  
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Figure 4: Partial rank correlation coefficients (PRCCs) of model parameters with respect to time-varying and final cumulative incidence for 2017 (A), 
2018 (B), and 2019 (C). 

In 2017, a period of lower protection and a less severe outbreak, 
a 0.03 increase in the transmission rate doubled the baseline 
cumulative incidence. A slight increase of 0.0001 in v produced 
a similar base case outcome, but only for small changes in the 
baseline transmission rate. In 2018, with higher protection and a 
higher baseline transmission rate, a 0.06 increase in transmission 
doubled the incidence, while a 0.005 increase in v yielded a 
similar base case outcome under slightly elevated transmission 

rates. In 2019, when protection levels were comparable but 
transmission was lower than in 2017, a 0.03 increase in 
transmission again doubled the baseline incidence, and a 0.0001 
increase in v resulted in a similar base case outcome, though at 
slightly lower transmission levels than in 2017 (Figure 5).  
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Figure 5: Heatmap with contour overlays of annual cumulative 
pertussis incidence under varying vaccination and transmission rates 
from 2017 to 2019. 

 
DISCUSSION 
 
We developed an SEIRS model accounting for the impact of 
vaccination and potential underreporting of pertussis cases to 
capture the dynamics of pertussis transmission in the Philippines. 
The model fit to the cumulative all-age pertussis incidence data 
from 2017 to 2019 demonstrates that it can reasonably describe 
observed trends in pertussis epidemiology, despite limited 
surveillance data. Our findings suggest that the true incidence of 
pertussis is approximately 10 to 40 times higher than reported 
cases, with uncertainty estimates suggesting it could be more 
than 1000-fold higher, underscoring considerable disease 
surveillance gaps. The transmission rate, protection rate, 
reporting factor, and recovery rate were found to be the most 
influential parameters shaping the transmission dynamics. 
 
Our analysis broadly aligns with findings from other settings 
where pertussis cases were underestimated. Studies across 

different populations have shown that the true incidence often 
exceeds reported cases by several orders of magnitude, with 
estimates ranging from hundreds to thousands of times higher 
(Bagordo et al. 2023; Guzman-Holst et al. 2023). These apparent 
discrepancies in the reported incidence of pertussis conceal a 
much higher level of ongoing transmission. This highlights the 
limitations of existing surveillance systems and emphasizes the 
need for improved case detection methods, such as serological 
surveys and enhanced syndromic surveillance, to obtain more 
accurate estimates of pertussis burden and to better inform 
control strategies.  
 
Consistent with previous studies (Safan et al. 2022; Domenech 
de Cellès et al. 2018; Althouse & Scarpino 2015), we identified 
the protection rate as a key parameter influencing pertussis 
transmission. Higher protection levels reduce susceptibility and 
limit spread, whereas lower protection levels increase the 
potential for outbreaks. Although estimated 𝑅,  values are 
modest compared with those reported by Cherry et al. (2013), 
there remains a risk of outbreak resurgence (Wang et al. 2025), 
particularly if protection levels decline. The protection rate 
becomes particularly critical during severe outbreaks, where 
maintaining high levels of protection is essential, as declines in 
immunity can trigger increases in case numbers. Alongside the 
protection rate, the recovery rate was found to be a key factor, 
with faster recovery shortening the infectious period and curbing 
onward spread. Collectively, these findings underscore the need 
for robust public health strategies that promote adherence to 
recommended immunization schedules and ensure the timely 
administration of booster doses to maintain durable population 
immunity against pertussis. 
 
Model results indicate an increase in the protection rate in 2018 
that coincides with the nationally reported rise in pertussis cases 
(World Health Organization 2024), possibly as a result of a 
stronger public health response during that year. The 
transmission rate also peaked in 2018, while underreporting 
remained high but was notably lower than in the previous year. 
By 2019, the protection rate had returned to the 2017 level, 
accompanied by a marked improvement in reporting, likely 
reflecting enhanced surveillance efforts following the rise in 
2018. However, these results should be interpreted with caution, 
given the simplified model structure, potential parameter non-
identifiability, and limitations in the quality of the available 
epidemiological data. Further studies are needed to validate 
these findings. 
 
This study has several limitations. First, our analysis was based 
on all-age weekly cumulative incidence data from 2017 to 2019. 
A more granular, age-stratified dataset spanning a longer 
timeframe could provide deeper insights into pertussis 
transmission across different population groups and improve 
estimates of vaccination impact by age. Moreover, incorporating 
more localized data (e.g., from specific cities or municipalities) 
could capture regional variations in transmission dynamics and 
strengthen the overall analysis. Second, our model does not 
explicitly distinguish between symptomatic and asymptomatic 
infections. Since asymptomatic or mild cases often go 
unreported but may significantly contribute to sustained 
transmission, incorporating these infections into future models 
could refine estimates of pertussis spread. Third, we did not 
account for seasonal variations in transmission. Considering 
time-varying transmission rates could improve our 
understanding of temporal fluctuations in pertussis incidence 
and enhance the accuracy of model predictions. Finally, while 
we evaluated the overall impact of vaccination, we did not 
explore specific vaccination strategies. Future research should 
assess targeted control strategies to identify optimal approaches 
for reducing pertussis incidence. 
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CONCLUSION 
 
This study revealed a potential underreporting of pertussis in the 
Philippines, with the true incidence estimated to be about 10 to 
40 times higher than reported, highlighting the need for 
enhanced surveillance systems and improved case detection to 
obtain more reliable incidence estimates. While pertussis 
vaccination has contributed to controlling disease spread, it 
would be beneficial for future efforts to focus on expanding 
vaccination coverage, sustaining high population immunity, and 
strengthening targeted strategies, such as booster campaigns or 
maternal and adult immunization, to further enhance pertussis 
control. 
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SUPPORTING INFORMATION 
 
Data Description and Preprocessing Techniques 
The weekly reported pertussis cases from 2017 to 2019 were 
obtained from the Weekly Disease Surveillance Report of the 
Department of Health Epidemiology Bureau. The original 
dataset consisted of 156 observations, including 16 missing 
values, which were imputed using the linear interpolation 
technique (Moritz and Bartz-Beielstein 2017). This method 
estimates missing values by connecting adjacent observed data 
points with straight lines and assigning intermediate values 
proportionally between them, thereby preserving the overall 
trend and continuity of the time series. The figure below shows 
the time series of the weekly reported cases from 2017 to 2019. 
It can be observed that the highest number of pertussis cases was 
recorded in the 20th week of 2018.  It can also be observed that 
pertussis cases usually spike at the last quarter of the year 
(September to December). 
 

 
Figure S1: Weekly reported pertussis cases in the Philippines from 
2017 to 2019. 

 
Supporting information related to Results 
 
Mathematical Analysis of the Pertussis Transmission Model  
Positivity and Boundedness of Solutions 
Theorem 1.  
If 𝑆!(0), 𝑆"(0), 𝐸!(0), 𝐸"(0), 𝐼!(0), 𝐼"(0), 𝑅(0), 𝑉(0) ≥ 0  then 
𝑆!(𝑡), 𝑆"(𝑡), 𝐸!(𝑡), 𝐸"(𝑡), 𝐼!(𝑡), 𝐼"(𝑡), 𝑅(𝑡), 𝑉(𝑡) ≥ 0  for all 
𝑡 > 0 and every solution of the system described starting in 𝛺 =
{(𝑆!, 𝑆", 𝐸!, 𝐸", 𝐼!, 𝐼", 𝑅, 𝑉) ∈ 𝑅6,0 : 𝑁 = 𝑆! +	𝑆" +	𝐸! +	𝐸" +
	𝐼! +	𝐼" + 	𝑅 + 𝑉} remains in 𝛺 for all 𝑡 > 0. 
 
Let the parameters 𝜆, 𝜃, 𝜎, 𝛾, 𝜔_𝑁,𝜔_𝑉, 𝑣 ≥ 0  and the initial 
conditions 
𝑆!(0), 𝑆"(0), 𝐸!(0), 𝐸"(0), 𝐼!(0), 𝐼"(0), 𝑅(0), 𝑉(0) ≥ 0.  The 
first conclusion is proved by contradiction. Suppose, one of the 
state variables, say 𝑥7(𝑡) , becomes negative at some 𝑡 >
0.	Because the variables are continuous, there must exist a first 
time 𝑡∗ > 0 at which 𝑥7(𝑡) satisfies the following:  
 

1. 𝑥7(𝑡∗) = 0, and  
2. 𝑥7(𝑡) < 0 for some 𝑡 just after 𝑡∗.  

 
At time 𝑡∗ , all other variables are still nonnegative. We will 
show that the derivative at the point where the variable reaches 
zero is nonnegative (i.e., it cannot decrease below 0 after 𝑡∗).  
 

1. If 𝑆!(𝑡∗) = 0 then &9#
&*
= − 1

#
𝑆!(𝐼! + 𝐼") − 𝑣𝑆! = 0.  

2. If 𝑆"(𝑡∗) = 0  then &9$
&*
= 𝜔#𝑅 +𝜔$𝑉 − 𝜃

1
#
𝑆"(𝐼! +

𝐼") − 𝑣𝑆" = 𝜔#𝑅 +𝜔$𝑉 ≥ 0.  

3. If 𝐸!(𝑡∗) = 0  then &:#
&*
= 1

#
𝑆!(𝐼! + 𝐼") − 𝜎𝐸! =

𝜆𝑆!(𝐼! + 𝐼") ≥ 0.  
4. If 𝐸"(𝑡∗) = 0  then &:$

&*
= 𝜃𝜆 1

#
(𝐼! + 𝐼") − 𝜎𝐸" =

𝜃 1
#
𝑆!(𝐼! + 𝐼") ≥ 0.  

5. If 𝐼!(𝑡∗) = 0 then &'#
&*
= 𝜎𝐸! − 𝛾𝐼! = 𝜎𝐸! ≥ 0.  

6. If 𝐼"(𝑡∗) = 0 then &'$
&*
= 𝜎𝐸" − 𝛾𝐼" = 𝜎𝐸" ≥ 0.  

7. If 𝑅(𝑡∗) = 0  then &;
&*
= 𝛾(𝐼! + 𝐼") − 𝜔#𝑅 = 𝛾(𝐼! +

𝐼") ≥ 0.  
8. If 𝑉(𝑡∗) = 0  then &$

&*
= −𝜔$𝑉 + 𝑣𝑆! + 𝑣𝑆" =

𝑣(𝑆! + 𝑆") ≥ 0.  
 
We can see that in each case, when a variable first becomes 0, 
its derivative becomes nonnegative, implying that the variable 
cannot decrease below zero after 𝑡∗ . This contradicts our 
assumption that the variable becomes negative at some 𝑡 > 0. 
Therefore, 𝑆!(𝑡), 𝑆"(𝑡), 𝐸!(𝑡), 𝐸"(𝑡), 𝐼!(𝑡), 𝐼"(𝑡), 𝑅(𝑡), 𝑉(𝑡) ≥
0 for all 𝑡 > 0.  
 
Now for the second part of the conclusion, let  𝑁(𝑡) = 𝑆!(𝑡) +
𝑆"(𝑡) + 𝐸!(𝑡) + 𝐸"(𝑡) + 𝐼!(𝑡) + 𝐼"(𝑡) + 𝑅(𝑡) + 𝑉(𝑡)  be the 
total number of individuals in all compartments at time 𝑡.  
Differentiating 𝑁,  
 

𝑑𝑁
𝑑𝑡 =

𝑑𝑆!
𝑑𝑡 +

𝑑𝑆"
𝑑𝑡 +

𝑑𝐸!
𝑑𝑡 +

𝑑𝐸"
𝑑𝑡 +

𝑑𝐼!
𝑑𝑡 +

𝑑𝐼"
𝑑𝑡 +

𝑑𝑅
𝑑𝑡 +

𝑑𝑉
𝑑𝑡  

 

= J−
𝜆
𝑁 𝑆!

(𝐼! + 𝐼") − 𝑣𝑆!K
+ (𝜔#𝑅 +𝜔$𝑉 − 𝜃𝜆𝑆"(𝐼! + 𝐼") − 𝑣𝑆")

+ J
𝜆
𝑁 𝑆!

(𝐼! + 𝐼") − 𝜎𝐸!K 
 

+J𝜃
𝜆
𝑁 𝑆"

(𝐼! + 𝐼") − 𝜎𝐸"K + (𝜎𝐸! − 𝛾𝐼!) + (𝜎𝐸" − 𝛾𝐼")
+ (𝛾(𝐼! + 𝐼") − 𝜔#𝑅)
+ (−𝜔$𝑉 + 𝑣𝑆! + 𝑣𝑆") = 0. 

 
 
Integrating both sides gives 𝑁(𝑡) = 𝑁(0), ∀𝑡 ≥ 0 , implying 
that the total population remains constant over time. Clearly, 
every value of each variable lies between 0 and N(0), then the 
solution  (𝑆!, 𝑆", 𝐸!, 𝐸", 𝐼!, 𝐼", 𝑅, 𝑉) stays in a bounded region of 
the nonnegative space for all 𝑡 ≥ 0 . Hence, the system is 
bounded.   
 
Local Stability of Disease-Free Equilibrium (DFE) 
The disease-free equilibrium (DFE) is a state at which the 
disease is not present in the population. In other words,  𝐸M! =
𝐸M" = 𝐼!̅ = 𝐼"̅ 	= 	0. The remaining steady-state equations are as 
follows: 
 

0 = −𝑣𝑆!̅   =𝑓𝑟𝑜𝑚	 &9#
&*
> 

0 = 𝜔#𝑅M + 𝜔$𝑉M − 	𝑣𝑆̅"  =𝑓𝑟𝑜𝑚	 &9$
&*
> 

0 = −𝜔#𝑅M   =𝑓𝑟𝑜𝑚	 &;
&*
> 

0 = −𝜔$𝑉M + 𝑣𝑆̅! + 	𝑣𝑆̅"  =𝑓𝑟𝑜𝑚	 &$
&*
> 

 
Assuming 𝜔#, 	𝜔$ ≥ 0  and 𝑣 > 0  then 𝑅M = 0 , 𝑆̅! = 0 , 𝑉M =
$
4!
𝑆"̅. 

 
Note that 𝑆̅" + 𝑉M = 𝑁; thus giving the DFE: 𝑆̅! = 𝐸M! = 𝐸M" =
𝐼!̅ = 𝐼"̅ = 𝑅M = 0, 𝑆"̅ =

4!
4!5+

𝑁,𝑉M = +
4!5+

𝑁. 
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To establish the local stability of the DFE, we used the basic 
reproduction number, 𝑅,.  Following the next-generation 
method, we considered the disease-related 
classes/compartments. 
𝑥 = (𝐸!, 𝐸", 𝐼!, 𝐼"). 
 
We set up new infection vector 𝐹(𝑥) and transmission vector 
𝑉(𝑥). New infections enter only the exposed compartments. 
 

𝐹! =
𝜆
𝑁𝑆!

(𝐼! + 𝐼") 
 

𝐹" =
𝜃𝜆
𝑁 𝑆"(𝐼! + 𝐼") 

 
𝐹< = 𝐹. = 0. 

 
Non-infection transitions are: 
 

𝑉! = 	𝜎𝐸! 
 

𝑉" = 	𝜎𝐸" 
 

𝑉< = 𝛾	𝐼! − 𝜎𝐸! 
 

𝑉. = 	𝛾		𝐼" − 𝜎𝐸" 
 
Now we compute the Jacobians 𝐹 = 𝐷=𝐹  and 𝑉 = 𝐷=𝑉 
evaluated at the DFE. 
 

𝐹 =

⎝

⎜⎜
⎛0 0
0 0

𝜆
𝑁
𝑆!X

𝜆
𝑁
𝑆!X

𝜃𝜆
𝑁 𝑆"X

𝜃𝜆
𝑁 𝑆"X

0 0
0 0

0 			0
0 			0 ⎠

⎟⎟
⎞

 

𝑉 = \

𝜎 		0
0 		𝜎

0 0
0 0

−𝜎 0
0 −𝜎

𝛾 0
0 𝛾

] 

𝑉-! =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1
𝜎 0 0 0

0 1
𝜎 0 0

1
𝛾 0

1
𝛾 0

0
1
𝛾 0

1
𝛾⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

We now form the next generation matrix 𝐾 = 𝐹𝑉-! 
 

𝐾 =

⎝

⎜⎜
⎜
⎛

𝜆𝑆!X
𝑁𝛾

𝜆𝑆!X
𝑁𝛾

𝜃𝜆𝑆"X
𝑁𝛾

𝜃𝜆𝑆"X
𝑁𝛾

𝜆𝑆!X
𝑁𝛾

𝜆𝑆!X
𝑁𝛾

𝜃𝜆𝑆"X
𝑁𝛾

𝜃𝜆𝑆"X
𝑁𝛾

0 						0
0 						0

0 						0
0 						0 ⎠

⎟⎟
⎟
⎞

 

 
𝑅, = 𝜌(𝐾)  or the spectral radius of 𝐾  is 1

#3
=𝑆! + 𝜃𝑆">. 

Substituting the values of 𝑆!X  and 𝑆"X , we have 𝑅, =
12
3

4!
4!5+

. 
 
Existence of the Endemic Equilibrium (EE) 
We set all derivatives to zero at EE and assume that 𝐼 ̅ = 𝐼!̅ +
𝐼"̅ > 0.  
 

From 𝐸!> = 0 , 𝐸M! =
19#???

#@
𝐼.̅   From 𝐼!̅′ = 0 , 𝐼!̅ =

@
3
𝐸M! =

19#???

#3
𝐼.̅ 

Similarly, 𝐸M" =
219$???'̅
#@

  and 𝐼"̅ =
219$???'̅
#3

. 

Thus, 𝐼 ̅ = 𝐼!̅ + 𝐼"̅ =
1
#3
(𝑆!X + 𝜃𝑆"X )𝐼.̅ 

With 𝐼 ̅ > 0 , 1
#3
(𝑆!X + 𝜃𝑆"X ) = 1 , which is the endemic 

equilibrium condition. From &;
&*
= 0, 𝑅M = 3

4%
𝐼.̅  

From &9#
&*
= 0, 𝑆!X = 0. From &9$

&*
= 0, 𝜔#𝑅M + 𝜔$𝑉M =

21
#
𝑆"X 𝐼 ̅ +

𝑉𝑆"X . 
Lastly, with 𝑉> = 0, 𝑉M = $

4!
(𝑆!X + 𝑆"X ) =

$
4!
𝑆"X . Then, 𝑆"X = #3

21
	, 

𝑉M = $
4!

3#
21

 , 𝑅M = 3
4%
𝐼,̅ 

 𝑁 = 𝑆"X + 𝐸!MMM + 𝐸"MMM + 𝐼!X + 𝐼"X + 𝑅M + 𝑉M . 

Hence, 𝐼 ̅ =
#-&%'(B!5

!
)!
C

&
*5!	5

&
)%

. 

For the EE to exist biologically, 𝑁 > #3
21
=1 + $

4!
> or 𝑅, > 1. 

 

 

 

 
Figure S2: Distributions of the parameter estimates 𝝀 , 
𝝓, and 𝒗 obtained through 1000 bootstrapped resamples generated 
via nonparametric sampling of cumulative reported incidence of 
pertussis in the Philippines, from 2017 to 2019. 

 
Figure S3: Estimated weekly number of A) infectious and B) protected 
individuals in the Philippines, from 2017 to 2019. 
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Table S1: Fitted parameter values when varying the proportions of initial naïve susceptibles (𝑺𝟏) and previously infected individuals (𝑺𝟐). 
S1 S2 𝜆 𝜙 𝒗 

2017 
0.5 0.5 0.5387 0.0198  0.0021 
0.6  0.4 0.5773  0.0198  0.0021 
0.4 0.6 0.5049   0.0199  0.0021 

2018 
0.5 0.5 0.9349        0.0263 0.0286 
0.6  0.4 1.0043      0.0261    0.0287 
0.4 0.6  0.8746        0.0264  0.0284 

2019 
0.5 0.5 0.4825        0.0935  0.0016 
0.6  0.4 0.4523        0.0936 0.0016 
0.4 0.6  0.5171    0.0935      0.0016 

Table S2: Fitted transmission rate (𝝀) when varying the proportion of initial protected individuals (𝑽). 
Initial proportion of 
protected individuals 2017 2018 2019 

0.1 0.440 0.759 0.394 
0.2 0.495 0.856 0.443 
0.3 0.566 0.983 0.507 
0.4 0.660 1.154 0.591 
0.5 0.793 1.397 0.709 
0.6 0.992 1.771 0.887 
0.7 1.325 2.421 1.183 
0.8 1.995 3.853 1.776 
0.9 4.045 7.352 3.565 

Table S3: Fitted protection rate (𝒗) when varying the proportion of initial protected individuals (𝑽). 
Initial proportion of 
protected individuals 2017 2018 2019 

0.1 0.020 0.027 0.094 
0.2 0.020 0.027 0.094 
0.3 0.020 0.026 0.094 
0.4 0.020 0.026 0.094 
0.5 0.020 0.025 0.094 
0.6 0.020 0.024 0.093 
0.7 0.020 0.023 0.093 
0.8 0.019 0.019 0.093 
0.9 0.019 0.009 0.093 

Table S4: Fitted protection rate (𝒗) when varying the proportion of initial protected individuals (𝑽). 
Initial proportion of 
protected individuals 2017 2018 2019 

0.1 0.002 0.028 0.002 
0.2 0.002 0.029 0.002 
0.3 0.003 0.029 0.002 
0.4 0.003 0.030 0.002 
0.5 0.003 0.031 0.003 
0.6 0.004 0.033 0.004 
0.7 0.005 0.035 0.005 
0.8 0.008 0.042 0.007 
0.9 0.015 0.068 0.014 
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